Question 4: How do we find the value of the arbitrary constant?

The antiderivative may be used to find a function from its derivative. If we know the derivative of a function is

$$
f^{\prime}(x)=30 x^{2}+16 x
$$

then the function must be

$$
\begin{aligned}
f(x) & =\int f^{\prime}(x) d x \\
& =\int\left(30 x^{2}+16 x\right) d x \\
& =10 x^{3}+8 x^{2}+C
\end{aligned}
$$

We can check this function by taking its derivative,

$$
f^{\prime}(x)=\frac{d}{d x}\left[10 x^{3}+8 x^{2}+C\right]=30 x^{2}+16 x
$$

Each value of C defines a different function. This means there is an infinite number of functions whose derivative is $f^{\prime}(x)=30 x^{2}+16 x$. To find a unique value for C, we need some information about the function $f(x)$. If we are given the fact that $f(1)=33$, we can use this information to find C. Substitute $x=1$ into the function and set this equal to 33,

$$
f(1)=10(1)^{3}+8(1)^{2}+C=33
$$

Simplifying and solving for C, we get

$$
\begin{aligned}
10+8+C & =33 \\
C & =15
\end{aligned}
$$

This means that the function with a derivative of $f^{\prime}(x)=30 x^{2}+16 x$ and that passes through $f(1)=33$ is

$$
f(x)=10 x^{3}+8 x^{2}+15
$$

Following this strategy, we can find any function from its derivative and some ordered pair on the function.

Example 10 Find a Function from its Derivative

The derivative of a function $g(x)$ is

$$
g^{\prime}(x)=2.4 x+17
$$

Find the function $g(x)$ that passes through $(10,295.4)$.

Solution To find a function from its derivative, take the antiderivative:

$$
\begin{aligned}
g(x) & =\int(2.4 x+17) d x \\
& =2.4 \cdot \frac{x^{2}}{2}+17 x+C \\
& =1.2 x^{2}+17 x+C
\end{aligned}
$$

Since $(10,295.4)$ is on $g(x)$, we know that $g(10)=295.4$. Substitute these values into the function and solve for C . This gives

$$
\begin{aligned}
g(10)=1.2(10)^{2}+17(10)+C & =295.4 \\
120+170+C & =295.4 \\
C & =5.4
\end{aligned}
$$

Using this value of C gives

$$
g(x)=1.2 x^{2}+17 x+5.4
$$

We can also apply this strategy to marginal functions in economics. From the marginal function, we can calculate the original function using the antiderivative.

Example 11 Find the Profit Function

A small manufacturing function models its marginal profit with the function

$$
P^{\prime}(Q)=-0.0070 Q+29.14 \text { dollars per unit }
$$

where Q is the number of units produced and sold. If producing and selling 2000 units results in $\$ 34,280$ in profit, find the profit function $P(Q)$ in dollars.

Solution The antiderivative of $P^{\prime}(Q)$ yields $P(Q)$. Carry out the indefinite integral to give

$$
\begin{aligned}
P(Q) & =\int(-0.0070 Q+29.14) d Q \\
& =-0.0070 \cdot \frac{Q^{2}}{2}+29.14 Q+C \\
& =-0.0035 Q^{2}+29.14 Q+C
\end{aligned}
$$

We know that a quantity of 2000 units produced and sold leads to a profit of $\$ 34,280$ or $P(2000)=34280$. Putting these values into the profit function gives us the appropriate value for C :

$$
\begin{aligned}
P(2000)=-0.0035(2000)^{2}+29.14(2000)+C & =34280 \\
-14000+58280+C & =34280 \\
C & =-10000
\end{aligned}
$$

The corresponding profit function is

$$
P(Q)=-0.0035 Q^{2}+29.14 Q-10000
$$

