Solve the system

$$5x+7y+12z = 134,000$$

 $2x+3y+5z = 56,000$
 $x+y+z = 14,000$

using the inverse matrix of the coefficient matrix

$$A = \begin{bmatrix} 5 & 7 & 12 \\ 2 & 3 & 5 \\ 1 & 1 & 1 \end{bmatrix}$$

and the constant matrix

$$B = \begin{bmatrix} 134,000 \\ 56,000 \\ 14,000 \end{bmatrix}$$

We'll calculate

$$X = A^{-1}B$$

to find the solution to the system of equations.

Enter the matrices A and C

- 1. Press 2nd x^{-1} to edit the matrix.
- 2. Move to the EDIT tab and select 1: [A].
- 3. Enter matrix A.
- 4. Repeat the process and enter matrix B.
- 5. Press [2nd] [MODE] to QUIT and return to the home screen.

Find the product matrix of A^{-1} and B on the home screen

- 6. Press $2ndx^{-1}$ to enter the name of the matrix A.
- 7. Use the x-1 key to place the inverse sign after of matrix A as shown.

 Press 2nd x-1 to enter the name of the matrix B. Note that you do not need to see the inverse matrix of A.
- 8. Press ENTER to see the product.

