Finding Antiderivatives by u Substitution
To understand how the substitution works in computing antiderivatives, we need to first make sure we understand how the chain rule works. Let’s start by taking the derivative of
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To apply the chain rule to this function, we identify the inside part, g(x), of the right side as
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and the outside part, f(x), as
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This means that the function is being written as a composition in the form 
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. The derivatives of these functions are
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This results in the derivative
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The corresponding antiderivative would be
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The derivative and antiderivative are opposite processes of each other:
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The opposite process of the chain rule is called u substitution. In this antiderivative technique, the inside function g(x) is called u and is used to simplify the integrand. Let’s look at how this is done. We’ll find the antiderivative
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Identify the inside function as 
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. The derivative of the inside function is 
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. We can find each of these functions in the integrand:
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Notice that this is simply the antiderivative of the outside function, 
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. We can evaluate this antiderivative with the power rule for antiderivatives,
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Since the original variable in the p[problem was x, we need to get back to that variable using 
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. This means the antiderivative is 
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A Slightly More Complicated Example
In the example above, the 
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was easy to find in the integrand. What if the integrand does not match up with 
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perfectly? Suppose we want to find the antiderivative
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Instead of a factor of 
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 in the integrand, we have a half of this factor or 
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. The easiest way to compensate for this lack of a factor of 2 is to put it in. However, then we need to balance this factor out by multiplying by 
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. Typically we do this in front of the antiderivative symbol:
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The factors in red are the same as 
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. The advantage here is that now we can see the factor corresponding to 
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in the integrand. Letting 
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 allow us to rewrite the right hand side of the equation above as
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The antiderivative is found with the power rule as 
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 so the final solution is 
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The 
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in the antiderivative balances out the doubling we needed to do to introduce the correct derivative of u.
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