Evaluate the difference quotient $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^{2}-2 x+4$.

This is a little different from $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$, but works the same way. Since a value is not supplied for $x$, we just leave it and work out the limit. Start by evaluating $f(x+h)$ :

$$
\begin{aligned}
f(x+h) & =(x+h)^{2}-2(x+h)+4 \\
& =x^{2}+2 x h+h^{2}-2 x-2 h+4
\end{aligned}
$$

Make sure you FOIL the square out and distribute the negative.

Now put this along with $f(x)$ into the difference quotient.

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\left(x^{2}+2 x h+h^{2}-2 x-2 h+4\right)-\left(x^{2}-2 x+4\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-2 h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h-2)}{h} \\
& =\lim _{h \rightarrow 0}(2 x+h-2)
\end{aligned}
$$

As $h$ gets smaller and smaller, the term in the middle gets smaller. This means the limit is equal to $2 x-2$. Since the other terms do not contain $x$, they are unaffected when $h$ gets small.

