This week you will be graphing the function from Project 3. To find the equation for this function, you need to utilize the initial population and doubling time of the population. The goal of this post is to help you to find the rate *r* in the function . You will need to use the doubling time assigned to you in the project letter to do this.

Continue reading “How Do I Use the Doubling Time to Find the Rate?”

# Category: Finite Math

## How Do I Set Up and Solve a System with Inverses?

Writing a system of equations can be frustrating. In many cases, this starts when you do not write out which variables corresponds to what. How can you use “the smallest loan is one-half of the next larger loan” if you do not know which letter represents the amount of the smaller loan and which letter represents the amount of the next larger loan?

Once you have the system, you can solve it with inverse matrices.

**Problem 1** A bank gives three loans totaling 400,000 dollars to a development company for the purchase of three business properties. The largest loan is 100,000 dollars more than the sum of the other two, and the smallest loan is one-half of the next larger loan. Find the amount of each loan.

The key to writing out the equations for this problem is to make sure you know exactly which letter goes with which loan. Otherwise you don’t know whether to write x = 1/2y or y = 1/2x.

Once you have the solution (done with the inverse of A above), make sure it makes sense with the original problem statement. In the board below, the students solved the exact same problem using rref on their calculator. I expect that you will use some type of technology to do rref or find the inverse.

Problem 2 An investor has 400,000 dollars in three accounts, paying 6%, 8%, and 10%, respectively. If she has twice as much invested at 8% as she has at 6%, how much does she have invested in each account if she earns a total of 36,000 dollars in interest?

The second equation was originally y = 2x since the amount at 8% is twice the amount at 6%. This was then manipulated to put the system in a form where matrices can be used. Writing this equation out is MUCH simpler if you have written out what each variable represents somewhere (upper left) on the page.

## How Do You Find The Intercepts of a Linear Function?

**Problem 2** The percent *p* of high school seniors who ever used marijuana can be related to *x*, the number of year after 2000, by the equation 25*p* + 21*x* = 1215.

a. Find the *x* intercepts of the graph of this function.

b. Find and interpret the *p* intercept of the graph of this function.

c. Graph the function using the intercept.

## How Do I Apply Bayes’ Rule To Medical Testing?

The Section 7.3 Homework contains problems about Bayes’ Theorem applied to medical testing. Let’s look at some resources to help you understand this type of problem.

The handout below shows a similar problem.

- Handout – Medical Testing and Bayes’ Rule

I have had a few questions about the Bayes’ Rule clock problem from the quiz. That problem is very similar to the problem in the handout below.

- Handout – Bayes’ Theorem Example

## How Do I Apply the Product Rule?

The Product Rule helps you to find probabilities involving intersections (and). It is easiest to apply when you have put your information on a tree diagram. This video shows how to find the probability of drawing two hearts in a row from a standard deck of cards.

For this example, you have two sets of branches since you are drawing two cards in a row.

If you are finding the probability of producing three male offspring in a row…you need three sets of branches. Each set of branches has goes toward male of female.